589 research outputs found

    Convergence analysis of a family of robust Kalman filters based on the contraction principle

    Full text link
    In this paper we analyze the convergence of a family of robust Kalman filters. For each filter of this family the model uncertainty is tuned according to the so called tolerance parameter. Assuming that the corresponding state-space model is reachable and observable, we show that the corresponding Riccati-like mapping is strictly contractive provided that the tolerance is sufficiently small, accordingly the filter converges

    A new family of high-resolution multivariate spectral estimators

    Full text link
    In this paper, we extend the Beta divergence family to multivariate power spectral densities. Similarly to the scalar case, we show that it smoothly connects the multivariate Kullback-Leibler divergence with the multivariate Itakura-Saito distance. We successively study a spectrum approximation problem, based on the Beta divergence family, which is related to a multivariate extension of the THREE spectral estimation technique. It is then possible to characterize a family of solutions to the problem. An upper bound on the complexity of these solutions will also be provided. Simulations suggest that the most suitable solution of this family depends on the specific features required from the estimation problem

    Multivariate Spectral Estimation based on the concept of Optimal Prediction

    Full text link
    In this technical note, we deal with a spectrum approximation problem arising in THREE-like multivariate spectral estimation approaches. The solution to the problem minimizes a suitable divergence index with respect to an a priori spectral density. We derive a new divergence family between multivariate spectral densities which takes root in the prediction theory. Under mild assumptions on the a priori spectral density, the approximation problem, based on this new divergence family, admits a family of solutions. Moreover, an upper bound on the complexity degree of these solutions is provided

    Rational approximations of spectral densities based on the Alpha divergence

    Full text link
    We approximate a given rational spectral density by one that is consistent with prescribed second-order statistics. Such an approximation is obtained by minimizing a suitable distance from the given spectrum and under the constraints corresponding to imposing the given second-order statistics. Here, we consider the Alpha divergence family as a distance measure. We show that the corresponding approximation problem leads to a family of rational solutions. Secondly, such a family contains the solution which generalizes the Kullback-Leibler solution proposed by Georgiou and Lindquist in 2003. Finally, numerical simulations suggest that this family contains solutions close to the non-rational solution given by the principle of minimum discrimination information.Comment: to appear in the Mathematics of Control, Signals, and System

    Robust Kalman Filtering under Model Perturbations

    Full text link
    We consider a family of divergence-based minimax approaches to perform robust filtering. The mismodeling budget, or tolerance, is specified at each time increment of the model. More precisely, all possible model increments belong to a ball which is formed by placing a bound on the Tau-divergence family between the actual and the nominal model increment. Then, the robust filter is obtained by minimizing the mean square error according to the least favorable model in that ball. It turns out that the solution is a family of Kalman like filters. Their gain matrix is updated according to a risk sensitive like iteration where the risk sensitivity parameter is now time varying. As a consequence, we also extend the risk sensitive filter to a family of risk sensitive like filters according to the Tau-divergence family

    An Interpretation of the Dual Problem of the THREE-like Approaches

    Full text link
    Spectral estimation can be preformed using the so called THREE-like approach. Such method leads to a convex optimization problem whose solution is characterized through its dual problem. In this paper, we show that the dual problem can be seen as a new parametric spectral estimation problem. This interpretation implies that the THREE-like solution is optimal in terms of closeness to the correlogram over a certain parametric class of spectral densities, enriching in this way its meaningfulness

    On the Robustness of the Bayes and Wiener Estimators under Model Uncertainty

    Full text link
    This paper deals with the robust estimation problem of a signal given noisy observations. We assume that the actual statistics of the signal and observations belong to a ball about the nominal statistics. This ball is formed by placing a bound on the Tau-divergence family between the actual and the nominal statistics. Then, the robust estimator is obtained by minimizing the mean square error according to the least favorable statistics in that ball. Therefore, we obtain a divergence family-based minimax approach to robust estimation. We show in the case that the signal and observations have no dynamics, the Bayes estimator is the optimal solution. Moreover, in the dynamic case, the optimal offline estimator is the noncausal Wiener filter

    A Bayesian Approach to Sparse plus Low rank Network Identification

    Full text link
    We consider the problem of modeling multivariate time series with parsimonious dynamical models which can be represented as sparse dynamic Bayesian networks with few latent nodes. This structure translates into a sparse plus low rank model. In this paper, we propose a Gaussian regression approach to identify such a model

    Model Predictive Control meets robust Kalman filtering

    Full text link
    Model Predictive Control (MPC) is the principal control technique used in industrial applications. Although it offers distinguishable qualities that make it ideal for industrial applications, it can be questioned its robustness regarding model uncertainties and external noises. In this paper we propose a robust MPC controller that merges the simplicity in the design of MPC with added robustness. In particular, our control system stems from the idea of adding robustness in the prediction phase of the algorithm through a specific robust Kalman filter recently introduced. Notably, the overall result is an algorithm very similar to classic MPC but that also provides the user with the possibility to tune the robustness of the control. To test the ability of the controller to deal with errors in modeling, we consider a servomechanism system characterized by nonlinear dynamics
    • …
    corecore